~scripts
58 itemsDownload ./*

58 itemsDownload ./*

..
display
dzen2
nginx
tiling
vosh
4cdl
4trips
alarm
ambient
battery-monitor
checkit
cleverbot.py
clock
color-gen
colors-hex
colorscheme.sh
compton.sh
dailywall
dmenu
ffthumb
grid
gridmacro
gridmacro.kde
help
importw
indexer
install-all.sh
install-twily.sh
installng
mp3ogg
netspeed.sh
orage
pipes
pipes.x
pipewire_bt.sh
ports
rain
randwall
readystart.sh
rotate.sh
scan.sh
screencast
screencast2
scrot
scrotw
search
skull
slocker
startblender.sh
starwars
streamit
sumnum
synctimedate.sh
tty-colorize
usrmount
ytp
ytplay
zombie-restart.sh


scriptsgrid
2 108•  6 years ago•  DownloadRawClose
6 years ago•  2 108

{}
#!/bin/bash
#
#   Author:         Twily                           2014 - 2018
#   Description:    Tile windows in floating mode using hotkeys
#   Requires:       wmctrl, xdotool, xwininfo, xprop, sed
#   Usage:          $ sh ./grid 2 4
#                   (Eg.: Bind key W-A-KP_[1-9] to "grid 1 [1-9]"
#  |---|---|---|          Bind key W-KP_[1-9]   to "grid 2 [1-9]"
#  | 7 | 8 | 9 |          Bind key W-C-KP_[1-9] to "grid 3 [1-9]")
#  |---|---|---|
#  | 4 | 5 | 6 |         (C~trl       A~lt        K~ey P~ad
#  |---|---|---|          W~in        S~hift)
#  | 1 | 2 | 3 |
#  |---|---|---|
#
# see http://twily.info/.config/openbox/rc.xml#view for keybind examples
#

WNAME=$(xdotool getactivewindow getwindowname)
WID=$(xdotool getactivewindow)
if [ "$WNAME" == "Desktop" ]; then exit 3; fi

W=1920              # Desktop Width
H=1080              # Desktop Height

eM=0               # (Used for equal margin on all sides)
G=0                # Window Gap

L=$eM               # Left Margin
T=$(( $eM + 25 ))   # Top Margin (+24 for panel)
R=$eM               # Right Margin
B=$eM               # Bottom Margin

eval $(xwininfo -id $WID |
    sed -n -e "s/^ \+Relative upper-left X: \+\([0-9]\+\).*/M=\1/p" \
           -e "s/^ \+Relative upper-left Y: \+\([0-9]\+\).*/D=\1/p")

eD=$D
D=$(( $D - 1 ));    # Customize to fine tune vertical alignment +/-

W=$(( $W - $L - $R ))
H=$(( $H - $T - $B ))
G=$(( $G / 2 ))
M=$(( $M * 2 ))

X=$L && Y=$T

case "$1" in                        # Window Left,Top,Width,Height
    1)  case "$2" in # (grid 1 [1-9])
            7)  X=$(( $L ))                    &&  Y=$(( $T ))                     # top left       (1/6)
                W=$(( $W / 3 - $G - $M ))      &&  H=$(( $H / 2 - $G - $D - $M ))  ;;
            8)  X=$(( $W / 3 + $L + $G ))      &&  Y=$(( $T ))                     # top center     (1/6)
                W=$(( $W / 3 - $G * 2 - $M ))  &&  H=$(( $H / 2 - $G - $D - $M ))  ;;
            9)  X=$(( $W / 3 * 2 + $L + $G ))  &&  Y=$(( $T ))                     # top right      (1/6)
                W=$(( $W / 3 - $G - $M ))      &&  H=$(( $H / 2 - $G - $D - $M ))  ;;

            4)  X=$(( $L ))                    &&  Y=$(( $T ))                     # left           (1/3)
                W=$(( $W / 3 - $G - $M ))      &&  H=$(( $H - $D - $M ))           ;;
            5)  X=$(( $W / 3 + $L + $G ))      &&  Y=$(( $T ))                     # center         (1/3)
                W=$(( $W / 3 - $G * 2 - $M ))  &&  H=$(( $H - $D - $M ))           ;;
            6)  X=$(( $W / 3 * 2 + $L + $G ))  &&  Y=$(( $T ))                     # right          (1/3)
                W=$(( $W / 3 - $G - $M ))      &&  H=$(( $H - $D - $M ))           ;;

            1)  X=$(( $L ))                    &&  Y=$(( $H / 2 + $T + $G ))       # bottom left    (1/6)
                W=$(( $W / 3 - $G - $M ))      &&  H=$(( $H / 2 - $G - $D - $M ))  ;;
            2)  X=$(( $W / 3 + $L + $G ))      &&  Y=$(( $H / 2 + $T + $G ))       # bottom center  (1/6)
                W=$(( $W / 3 - $G * 2 - $M ))  &&  H=$(( $H / 2 - $G - $D - $M ))  ;;
            3)  X=$(( $W / 3 * 2 + $L + $G ))  &&  Y=$(( $H / 2 + $T + $G ))       # bottom right   (1/6)
                W=$(( $W / 3 - $G - $M ))      &&  H=$(( $H / 2 - $G - $D - $M ))  ;;

            *)  exit 2  ;;
        esac
    ;;

    2)  case "$2" in # (grid 2 [1-9])
            7)  X=$(( $L ))                    &&  Y=$(( $T ))                     # top left       (1/4)
                W=$(( $W / 2 - $G - $M ))      &&  H=$(( $H / 2 - $G - $D - $M ))  ;;
            8)  X=$(( $L ))                    &&  Y=$(( $T ))                     # top            (1/2)
                W=$(( $W - $M ))               &&  H=$(( $H / 2 - $G - $D - $M ))  ;;
            9)  X=$(( $W / 2 + $L + $G ))      &&  Y=$(( $T ))                     # top right      (1/4)
                W=$(( $W / 2 - $G - $M ))      &&  H=$(( $H / 2 - $G - $D - $M ))  ;;

            4)  X=$(( $L ))                    &&  Y=$(( $T ))                     # left           (1/2)
                W=$(( $W / 2 - $G - $M ))      &&  H=$(( $H - $D - $M ))           ;;
            5)  X=$(( $L ))                    &&  Y=$(( $T ))                     # center         (1/1)
                W=$(( $W - $M ))               &&  H=$(( $H - $D - $M ))           ;;
            6)  X=$(( $W / 2 + $L + $G ))      &&  Y=$(( $T ))                     # right          (1/2)
                W=$(( $W / 2 - $G - $M ))      &&  H=$(( $H - $D - $M ))           ;;

            1)  X=$(( $L ))                    &&  Y=$(( $H / 2 + $T + $G ))       # bottom left    (1/4)
                W=$(( $W / 2 - $G - $M ))      &&  H=$(( $H / 2 - $G - $D - $M ))  ;;
            2)  X=$(( $L ))                    &&  Y=$(( $H / 2 + $T + $G ))       # bottom         (1/2)
                W=$(( $W - $M ))               &&  H=$(( $H / 2 - $G - $D - $M ))  ;;
            3)  X=$(( $W / 2 + $L + $G ))      &&  Y=$(( $H / 2 + $T + $G ))       # bottom right   (1/4)
                W=$(( $W / 2 - $G - $M ))      &&  H=$(( $H / 2 - $G - $D - $M ))  ;;

            *)  exit 2  ;;
        esac
    ;;

    3)  case "$2" in # (grid 3 [1-9])
            7)  X=$(( $L ))                    &&  Y=$(( $T ))                     # top left       (1/3)
                W=$(( $W / 3 * 2 - $G - $M ))  &&  H=$(( $H / 2 - $G - $D - $M ))  ;;
            8)  X=$(( $W / 3 / 2 + $L ))       &&  Y=$(( $T ))                     # top            (1/2)
                W=$(( $W / 3 * 2 - $M ))       &&  H=$(( $H / 2 - $G - $D - $M ))  ;;
            9)  X=$(( $W / 3 + $L + $G ))      &&  Y=$(( $T ))                     # top right      (1/3)
                W=$(( $W / 3 * 2 - $G - $M ))  &&  H=$(( $H / 2 - $G - $D - $M ))  ;;

            4)  X=$(( $L ))                    &&  Y=$(( $T ))                     # left           (2/3)
                W=$(( $W / 3 * 2 - $G - $M ))  &&  H=$(( $H - $D - $M ))           ;;
            5)  X=$(( $L + $W / 10 ))          &&  Y=$(( $T + $H / 10 ))           # center         (1/1)
                W=$(( $W - $W / 5 - $M ))      &&  H=$(( $H - $H / 5 - $D - $M ))  ;;
            6)  X=$(( $W / 3 + $L + $G ))      &&  Y=$(( $T ))                     # right          (2/3)
                W=$(( $W / 3 * 2 - $G - $M ))  &&  H=$(( $H - $D - $M ))           ;;

            1)  X=$(( $L ))                    &&  Y=$(( $H / 2 + $T + $G ))       # bottom left    (1/3)
                W=$(( $W / 3 * 2 - $G - $M ))  &&  H=$(( $H / 2 - $G - $D - $M ))  ;;
            2)  X=$(( $W / 3 / 2 + $L ))       &&  Y=$(( $H / 2 + $T + $G ))       # bottom         (1/2)
                W=$(( $W / 3 * 2 - $M ))       &&  H=$(( $H / 2 - $G - $D - $M ))  ;;
            3)  X=$(( $W / 3 + $L + $G ))      &&  Y=$(( $H / 2 + $T + $G ))       # bottom right   (1/3)
                W=$(( $W / 3 * 2 - $G - $M ))  &&  H=$(( $H / 2 - $G - $D - $M ))  ;;

            *)  exit 2  ;;
        esac
    ;;

    *)  exit 1  ;;
esac

CURSOR=$(xdotool getmouselocation --shell | grep X | cut -c 3-) # Multi-monitor
if [ "$CURSOR" -gt "3840" ]; then
    X=$(( $X + 3841 )) # Third monitor
elif [ "$CURSOR" -gt "1920" ]; then
    X=$(( $X + 1921 )) # Second monitor
fi

WMCLASS=$(xprop -id $WID | grep WM_CLASS) # Fix windows
case "$WMCLASS" in
    *"spotify"* | *"libreoffice"* | *"obs"*)
        Y=$(( $Y + $eD ))
        ;;
    *)  ;;
esac

wmctrl -r :ACTIVE: -b remove,maximized_vert,maximized_horz
wmctrl -r :ACTIVE: -e 0,$X,$Y,$W,$H
exit 0


Top
©twily.info 2013 - 2024
twily at twily dot info



2 158 387 visits
... ^ v